Broadband Amplitude Squeezing in Electrically Driven Quantum Dot Lasers at Room Temperature

S Ding¹, S Zhao¹, N Fabre¹, N Belabas², H Huang¹, and F Grillot¹,³

¹LTCI, Telecom Paris, Institut Polytechnique de Paris, Palaiseau, France
²C2N, CNRS UMR 9001, Université Paris-Saclay, Palaiseau, France
³Center for High Technology Materials, University of New Mexico, Albuquerque NM, USA

Contact Email: tjdxdsh@hotmail.com

The advancement of optical information technology necessitates high-performance light sources with reduced noise levels for applications in classical optics (e.g., LiDAR, optical communications) and quantum photonics (e.g., CV-QKD, quantum computing, quantum sensing) [1–4]. For these quantum applications, it is crucial to suppress noise below the standard quantum limit (SQL), also known as the shot noise level (SNL) [5]. Conventional methods employ nonlinear effects, such as the Kerr effect and four-wave mixing, in nonlinear crystals and even integrated photonics platforms [6,7]. Quiet pump-driven semiconductor lasers [8,9], particularly quantum dot (QD) lasers, are promising to achieve squeezed states and facilitate optical quantum integration. In this work [10], we demonstrate single-mode amplitude squeezed state using a QD distributed feedback (DFB) laser under quiet pumping condition, achieving 1.0 dB amplitude-squeezing level and around 9 GHz squeezing bandwidth at room temperature as shown in Figure 1. After the noise-correction, the amplitude-squeezing level can be up to 3.1 dB. The results confirm the potential of QD lasers for quantum technologies.

References
