Experimental Characterisation of a Single-Shot Spectrometer for High-Flux, GeV-Scale Gamma-Ray Beams

N CAVANAGH¹, K FLECK¹, M J V STREETER¹, E GERSTMAYR¹, L T DICKSON², C BALLAGE², L CALVIN¹, R CADAS², S DOBOSZ DUFRENOV³, I MOULANIER², L ROMAGNANI⁴, O VASILOVICI², A WHITEHEAD², A SPECKA⁵, B CROS², AND G SARRI¹

¹School of Mathematics and Physics, Queen's University Belfast, Belfast, UK
²LPGP, CNRS, Univ. Paris Sud, Université Paris-Saclay, Orsay, France
³LIDYL, CEA, Universite Paris-Saclay, Gif-sur-Yvette, France
⁴LULI, CNRS, Palaiseau, France
⁵LLR, Ecole Polytechnique, CNRS, Palaiseau, France
Contact Email: e.gerstmayr@qub.ac.uk

We report on the experimental characterisation of a gamma-ray spectrometer designed to spectrally resolve high-flux photon beams with energies in the GeV range. The characterisation was performed at the Apollon laser facility using a bremsstrahlung source driven by laser-wakefield accelerated electron beams (maximum energy >1.5 GeV and total charge of 200 pC). The experimental results confirm the possibility of performing single-shot measurements, without the need for accumulation. Scaling the results to photons in the multi-GeV range could yield percent-level energy resolution, as required, for instance, by the next generation of experiments probing strong-field quantum electrodynamics.