Temporal Localized Structures in Degenerate-Cavity Lasers: from Patterns to Spatio-Temporally Reconfigurable Light

A BARTOLO^{1,2}, N VIGNE², M MARCONI¹, G BEAUDOIN³, K PANTZAS³, L LE GRATIET³, I SAGNES³, S GUREVICH⁴, F MAUCHER⁵, J JAVALOYES⁵, A GARNACHE², AND M GIUDICI¹

¹Institut de Physique de Nice, Université Côte d'Azur, Nice, France

²Institut d'Electronique et des Systèmes, Univ. Montpellier, Montpellier, France

³Centre for Nanosciences and Nanotechnology, Universite Paris-Saclay, CNRS, Paris, France

⁴Institute for Theoretical Physics, University of Munster, Munster, Germany

⁵Departament de Física and IAC-3, Universitat de les Illes Balears, Palma De Mallorca, Spain

Contact Email: massimo.giudici@inphyni.cnrs.fr

Spatiotemporal mode-locking is a promising lasing regime for developing coherent sources for multimode nonlinear photonics. We show that a degenerate-cavity Vertical External-Cavity Surface-Emitting Lasers (VECSELs) can be operated in this regime. The emitted pulses exhibit a spatial profile which depends on the resonator parameters. Approaching the self-imaging condition, we observe mainly two kinds of non homotetic patterns: hexagons and rolls. These pulsating patterns are temporally localized, *i.e.*, they can be individually addressed by shining optical pump pulses. Our result reveals that largeaspect-ratio VECSELs offer unique opportunities for studying fully developed spatiotemporal dynamics and for applications to multidimensional control of light. As an example, we provide a proof of principle of a VECSEL capable of generating spatio-temporally reconfigurable light.