Exploring Attosecond Dynamics *via* Angular Streaking at Free-Electron Lasers

W Helml¹, M Ilchen², and B Sick³

 $^1Department\ of\ Physics,\ TU\ Dortmund,\ Maria-Goeppert-Mayer-Straße\ 2,\ 44227,\ Dortmund,\ Germany.$ Contact Phone: $+49\ 231\ 755\ 5376$ $^2DESY,\ Hamburg,\ Germany$ $^3University\ of\ Kassel,\ Kassel,\ Germany$ Contact Email: Wolfram.Helml@tu-dortmund.de

The field of attosecond physics has recently been extended from ultrafast laser laboratories to free-electron laser sources. This allows novel paths of investigation, like site-specific exploration of electron dynamics in molecules or time-resolving nonlinear X-ray excitation dynamics. To fully capitalize on the opportunities provided by these new tools, strategies to characterize the usually stochastic X-ray pulses have to be developed and implemented. We describe the method of angular streaking in combination with machine learning techniques as a way to achieve single-shot time-energy information about the FEL pulse structures and report on first measurements with sub-femtosecond pulses at the European XFEL. Hints of two-photon double core excitation processes in neon within single XFEL shots and the dependence of their dynamics on the spike separation of the X-ray pulses are presented.

This work was achieved in a huge worldwide collaboration with the following coworkers:

Markus Ilchen¹, Sadia Bari^{1,2}, Thomas M Baumann³, Christopher Behrens¹, Yilmaz Bican¹, Mahdi Bidhendi¹, Rebecca Boll³, Markus Braune¹, Günter Brenner¹, Francesca Calegari¹, Alberto De Fanis³, Markus Degenhardt¹, Kristina Dingel⁴, Stefan Düsterer¹, Felix Egun⁵, Arno Ehresmann⁴,

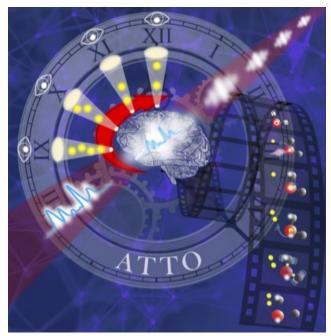


Figure 1: Intelligent Angular Streaking. The figure sketches the main idea of the described approach for attosecond physics at FELs: The stochastic FEL pulse structure is made available for each shot by an angular streaking measurement in conjunction with a machine-learning-based retrieval, and the acquired precise trigger knowledge is used for the interpretation of the initiated ultrafast dynamics in the observed system

Benjamin Erk¹, Lars Funke⁶, Andreas Galler³, Gianluca Geloni³, Gesa Goetzke¹, Tais Gorkhover⁷, Jan Grünert³, Patrik Grychtol³, Marc Guetg³, Andreas Hans⁴, Arne Held⁶, Ruda Hindrikson⁴, Moritz Hoesch¹, Till Jahnke^{3,8}, Fini Jastrow¹, Reinhard Kienberger⁹, Stephan Kuschel⁷, Joakim Laksman³, Mats Larsson¹⁰, Jia Liu³, Jon Marangos⁵, Lutz Marder⁴, David Meier⁴, Michael Meyer³, Najmeh Mirian³, Jacobo Montano³, Terence Mullins³, Valerija Music^{1,3,4}, Christian Ott¹¹, Thorsten Otto⁴, Yevheniy Ovcharenko³, Steffen Palutke¹, Christopher Passow¹, Thomas Pfeifer¹¹, Nils Rennhack³, Daniel Rivas³, Daniel Rolles¹², Artem Rudenko¹², Patrick Rupprecht¹¹, Sara Savio^{1,6}, Albert Schletter⁹, Frank Scholz¹, Jörn Seltmann¹, Svitozar Serkez³, Philipp Schmidt³, Evgeny Schneidmiller¹, Bernhard Sick⁴, Richard D Thomas¹⁰, Kai Tiedtke¹, Sergey Usenko³, Jens Viefhaus¹³, Peter Walter¹⁴, Vincent Wanie¹, Niclas Wieland⁶, Lasse Wülfing⁸, Mikhail Yurkov¹, Vitali Zhaunerchyk¹⁵

- 2. University of Groningen, Netherlands
- 3. European XFEL, Schenefeld, Germany
- 4. University of Kassel, Germany
- 5. Imperial College London, United Kingdom
- 6. Technical University of Dortmund, Germany
- 7. University of Hamburg, Germany
- 8. University of Frankfurt, Germany
- 9. Technical University of Munich, Germany
- 10. University of Stockholm, Sweden
- 11. Max-Planck Institut für Kernphysik, Heidelberg, Germany
- 12. Kansas State University, Manhattan, USA
- 13. Helmholtz Zentrum Berlin, Germany
- 14. SLAC National Accelerator Laboratory, Menlo Park, USA
- 15. University of Gothenburg, Sweden