Observation of Nonlinear Compton Scattering in Laser-Electron Collisions at CoReLS

C I HOJBOTA¹, M MIRZAIE¹, D Y KIM¹, V B PATHAK¹, T G PARK^{1,2}, C M KIM^{1,3}, H W LEE¹, J W YOON^{1,3}, S K LEE^{1,3}, Y J RHEE¹, M VRANIC⁴, O AMARO⁴, K Y KIM^{1,2,5}, J H SUNG^{1,3}, AND C H NAM^{1,2}

¹Center for Relativistic Laser Science, Institute for Basic Science, Gwangju, South Korea

²Department of Physics and Photon Science, Gwangju Institute of Science and Technology, Gwangju, South Korea

³Advanced Photonics Research Institute, Gwangju Institute of Science and Technology, Gwangju, South Korea

⁴GoLP/IPFN, Instituto Superior Tecnico, Universidade de Lisboa, Lisbon, Portugal

⁵Institute for Research in Electronics and Applied Physics, University of Maryland, College Park MD, USA

Contact Email: calinh@ibs.re.kr

In this work we confirm the experimental demonstration of nonlinear Compton scattering (NCS) through the observation and characterization of gamma-ray beams. We implemented the experiments by colliding a 1-3 GeV electron beam produced from laser wakefield acceleration with an ultra-intense laser pulse (I> 10^{20} W/cm²). The precise synchronization of the two beams, over a few- μ m spatial scale and ≈ 10 fs timescale, allowed us to attain a quantum nonlinearity parameter of $\chi_e \approx 0.5$. The resulting gamma-ray beams exhibited exceptional brightness, having a critical energy $E_c > 150$ MeV and divergence $\theta_{\gamma} \approx 1$ mrad. All potential sources of noise were characterized, giving us a high confidence in the NCS measurements. The outcome of this work opens the path to more in-depth studies of Strong Field QED in laser-electron collisions.