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Some dye molecules used in lasers are characterized by a strong dipole active transition 1S-2S. In order
to describe a system of such low symmetry molecules interacting with light, it is important to introduce the
field of orientations of ~n(~x) of the dipolar matrix element d of the optical transition. Local orientation of
the molecular symmetry axis determines ~n(~x). Inspired by the realization of the Bose-Einstein condensate
of light in the system of the dye molecules [1,2], the analysis [3,4] of the role of the molecular orientations
has discovered various novel phases and phase transitions in the limit of the macroscopic population of
photons.

Here we argue that very interesting options for exotic phases can exist in the lattice of microcavities,
each containing one or few such excited molecules in the limit when there is no macroscopic population
of free photons. In this limit, virtual photons support the transport of the excitons between lattice sites.
The resulting excitonic phases strongly depend on the geometry of the lattice and the resonators. In
general, the operator of the amplitude of the exciton tunneling from a site i to a site j in the lowest order
of the fine-structure constant has a form
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where c†i , ci are bosonic operators of the excitons; ~rij stands for the vector of a distance between the
sites; the Greek indices refer to the spatial coordinates; the tensor Vαβ(~rij) ∼ d2 accounts for the lattice
geometry. In the limit of |~rij | much less than the resonant wavelength λ, one finds Vαβ(~r) = d2
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where the indices refer to the x̂, ŷ, ẑ directions. In the situation when the lattice is immersed in a 2D
resonator (two parallel mirrors like in Ref. [1, 2]) and in the limit, |~rij | >> λ, the angular part of the
amplitude becomes Vαβ(~r) ∼ δαβ , with the indices referring to the directions along the mirrors and
the spatial dependence controlled by the detuning from the resonance. If the sites i, j are connected
by a 1D micro-waveguide supporting the resonance mode TE(1,0), the angular part in Eq.(1) becomes
Vαβ(~rij) ∼ d2eα,ijeβ,ij , where eα,ij is a unit vector determining the polarization of the mode of the
waveguide (that is, ~eij~rij = 0). In this case, the excitonic transport becomes highly anisotropic and
strongly dependent on ~n, which may be useful in photonic applications.

Since ~n(~xi) is not, in general, ordered, a lattice system of such excitons cannot be treated within the
standard polaritonic approach of a coherent mixing between excitons and light. One feature inherently
present in all such lattice models, where the excitons and the field of orientations are two dynamical
variables, is the Z2 gauge symmetry. Indeed, the amplitude (1) demonstrates the local (gauge) symmetry
~n(~ri) → −~n(~ri) together with ci → −ci. This excludes any coherence in either subsystem—that is, an
order can only exist in a gauge invariant combination of both fields such as,e.g., the product ~pi = ~n(~ri)ci.
[The coherence, then, occurs in the combined density matrix 〈p†α,ipβ,j〉]. There are also other—higher
order combinations which may demonstrate an order, while ~pi is disordered. For example, it can be the
tensor nα(~ri)nβ(~ri) (nematic order) or the pairing order parameter cicj . There is also a possibility for
insulating phases such as checkerboard and valence-bond solids. It is important to note that the gauge
symmetry makes this type of system strongly interacting, which renders the mean-field analysis unreliable.
Accordingly, numerical simulations must be performed in order to identify possible phases.
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