Nonlinear Compton Scattering in Time-Dependent Electric Fields: LCFA and Beyond

E G Gelfer¹, A M Fedotov², A A Mironov^{2,3}, and S Weber^{1,4}

¹ELI Beamlines, Institute of Physics of the Czech Academy of Sciences, Prague, Czech Republic

²Theoretical Nuclear Physics, National Research Nuclear University (MEPhI), Moscow, Russia

³Theoretical Department, Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, Russia

⁴Xi'an Jiaotong University, Xi'an, China Contact Email: egelfer@gmail.com

Locally constant crossed field approximation (LCFA) is a powerful tool for theoretical and numerical studies of strong-field QED processes. LCFA probabilities are implemented in all the modern codes capable of simulating laser-matter interactions at extreme intensities. Nevertheless, the validity of LCFA is yet rigorously derived only in-plane wave-like fields. This is a good model for a single laser pulse, but the list of potentially interesting field configurations is wider. In particular, the fields composed by a collision of several laser pulses are beneficial for producing QED cascades and look more like a rotating electric field. In the talk, we consider Nonlinear Compton Scattering in a time-dependent electric field (a rotating electric field is a particular example of such configuration) and discuss in detail the range of applicability of LCFA and corrections to it.