## Synthetic Gauge Potentials for the Dark State Polaritons in Atomic Media

Y H Kuan<sup>1</sup>, S W Shao<sup>1</sup>, I K Liu<sup>2</sup>, J Ruseckas<sup>3</sup>, G Juzeliunas<sup>4</sup>, Y J Lin<sup>5</sup>, and W T Liao<sup>1</sup>

<sup>1</sup>Physics, National Central University, Taoyuan, Taiwan
<sup>2</sup>School of Mathematics, Statistics & Physics, Joint Quantum Centre (JQC) Durham-Newcastle, Newcastle
University, Newcastle upon Tyne, UK

<sup>3</sup>Baltic Institute of Advanced Technology, Vilnius, Lithuania

<sup>4</sup>Institute of Theoretical Physics and Astronomy, Vilnius University, Vilnius, Lithuania

<sup>5</sup>Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, Taiwan

Contact Email: wente.liao@g.ncu.edu.tw

The quest of utilizing neutral particles to simulate the behaviour of charged particles in a magnetic field makes the generation of the artificial magnetic field of great interest. We put forward an optical scheme to generate effective gauge potentials for stationary-light polaritons in the static laboratory frame. To demonstrate the capabilities of our approach, we present a recipe for having dark-state polaritons in degenerate Landau levels. Our scheme paves a novel way towards a versatile quantum simulator for mimicking different Hamiltonians and the investigation of the bosonic analogue of the fractional quantum Hall effect by electromagnetically induced transparency.

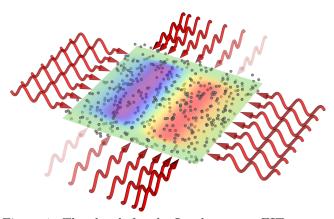



Figure 1: The sketch for the Landau-gauge EIT system. Gray dots represent atoms, and the red-sinusoidal arrows illustrate four control fields. The density and the opacity of arrows reflect the control field strength. The coloured density plot depicts the spatial distribution of the dark-state polarization  $\rho_{21}$