Tomographic Extraction of the Internuclear Separation Based on Two-Center Interference with Aligned Diatomic Molecules

R Sun1, X Lai1, S Yu1, Y Wang1, S Xu1, W Quan1, and X Liu1

1State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Wuhan, China
Contact Email: xjliu@wipm.ac.cn

Investigations of the interaction of intense femtosecond laser with atoms and molecules have offered a new opportunity in ultrafast imaging of molecular structure and dynamics. Several imaging approaches based on intense laser-molecule interaction, \textit{e.g.}, laser-induced electron diffraction (LIED), photoelectron holograph (PH), and high-harmonic generation (HHG) spectroscopy, etc. have been proposed and achieved great successes in past decades \cite{1}. Among those approaches, LIED is of particular interesting as it provides a promising method to extract the molecular internuclear separation and to trace its evolution on sub-femtosecond timescale \cite{2}. Still, the LIED approach requires a priori knowledge of the atomic differential cross sections (DCSs) and a relatively complicated derivation in the extraction procedure. In this work, we will demonstrate a simple tomographic method to retrieve the molecular internuclear separation \cite{3}, which is based on the two-centre interference from the laser-induced rescattered electron in aligned diatomic molecules. Some advantages of our approach, compared to the well-explored LIED scheme, will be discussed.

References

\cite{1} J Xu, C I Blaga, P Agostini and L F DiMauro, J. Phys. B 49, 112001 (2016)

\cite{2} C I Blaga, J Xu, A D DiChiara, E Sistrunk, K Zhang, P Agostini, T A Miller, L F DiMauro and C D Lin, Nature 483, 194 (2012)

\cite{3} R Sun, X Lai, S Yu, Y Wang, S Xu, W Quan and X Liu, Phys. Rev. Lett. 122, 193202 (2019)