The Photon Number Distribution of a Multimode Thermal State Subsystem Under Multiple Photon Annihilation

G V Avosopiants1,2, K G Katamadze2,3, N A Bogdanova1,3, Yu I Bogdanov1,3, and S P Kulik2

1National Research University of Electronic Technology (MIET), Moscow, Russia
2Quantum Technology Centre of Moscow State University, Moscow, Russia
3Valiev Institute of Physics and Technology, Russian Academy of Sciences, Moscow, Russia

Contact Email: avosopyantsgrant@gmail.com

Historically, thermal states of light lay in the basis of quantum optics. However, they are classical i.e. they can be described with customary visualisation by considering a light beam as a set of waves. Thus, in recent years, scientists use them to probe some quantum phenomena in order to understand if these effects are really quantum and if any non-classical properties of light give any benefits, or not. Lately, thermal states utilisation in effects based on the photon annihilation in several modes, like quantum vampire effect \cite{1-3} and etc., so the general theory of multiphoton subtracted multimode thermal states has grown in relevance. As is well known, their correlation properties and the photon number distribution as a whole are strongly dependent on the mode number defined by the detection scheme. The same changes can be caused by photon annihilation \cite{4,5}.

Therefore, we describe the general case of the multimode thermal state after a multiple photon annihilation, when the photon number statistics is registered by the detector selecting a part of the initial modes. We present an analytical form of the obtained photon number distribution, its general properties and check them in the experiment \cite{6}.

References

\cite{1} I A Fedorov, A E Ulanov, Y V Kurochkin and A I Lvovsky, Optica \textbf{2}, 112 (2015)
\cite{2} K G Katamadze, G V Avosopiants, Yu I Bogdanov and S P Kulik, Optica \textbf{5}, 723 (2018)