Amplification of 10 μm Light with a 2 μm Optical Pumped CO$_2$ Laser

Y Kassimi1, P É Chantrel1, M Piché1, and B Witzel1

1COPL, Laval University, 2375 rue de la Terrasse, Bureau 2149, Québec City, Canada.
Contact Phone: +14186563529
Contact Email: berndwitzel@hotmail.com

CO$_2$ is one of the most efficient amplification media known. Usually CO$_2$ is excited by an electrical discharge, and laser action can be achieved at 10.6 μm as well as 9 μm. The minimal possible pulse duration of the amplified beam depends on the maximal CO$_2$ gas pressure in the laser tube and is limited under discharge excitation to 1.5–2.0 ps using chirped pulse amplification [1]. A different excitation method consists in pumping CO$_2$ molecules with an infrared laser [2]. This allows increasing the CO$_2$ pressure in the laser cell to more than 40 bars, leading to the amplification of much shorter laser pulses. We want to discuss the possibility of using 2 μm light from a YAG pumped high power OPO system to amplify 10 μm. We will also present results from our 2 μm OPO system.

References