Subterawatt Few-Cycle Mid-Infrared Pulses from a Single Filament

A V Mitrofanov1,2,3,4, A A Voronin1,2, D A Sidorov-Biryukov1,2, S I Mitryukovsky1, A B Fedotov1,2, V Shumakova5, S Ališauskas5, A Pugžlys5,6, V Ya Panchenko3,4, A Baltuška5,6, and A M Zheltikov1,2,3,7

1Russian Quantum Center, Skolkovo, Moscow Region, Russia
2Physics Department, International Laser Center, M.V. Lomonosov Moscow State University, Moscow, Russia
3National Research Center "Kurchatov Institute", Moscow, Russia
4Institute on Laser and Information Technologies of the Russian Academy of Sciences, Federal Scientific Research Center «Crystallography and Photonics»of Russian Academy of Sciences, Shatura, Moscow Region, Russia
5Photonics Institute, TU Wien, Vienna, Austria
6Center for Physical Sciences & Technology, Vilnius, Lithuania
7Department of Physics and Astronomy, Texas A&M University, College Station, TX, USA

Contact Email: dima-sidorov@mail.ru

Filamentation-assisted pulse compression in the gas phase is shown to enable the generation of subterawatt few-cycle pulses in the mid-infrared. With both spatial modulation instabilities and excessive plasma scattering of the mid-infrared beam prevented through a careful choice of the gas pressure and the input peak power, providing single-filament regime of pulse propagation, peak powers as high as 0.3 TW are achieved in a truly single-mode, almost diffraction-limited 35-fs output at a central wavelength of 4 μm. Applications in molecular spectroscopy, semiconductor electronics, high-field physics, standoff detection, and innovative X-Ray sources are envisaged.

![Figure 1: Pulse compression of mid-IR pulses to sub-cycle pulse widths in a filament induced in a high-pressure gas: GS, grism stretcher; GC, grating compressor; D, diaphragm; SM, spherical mirror; W, CaF2 wedge, BS, thin-film beam splitter; DL, tunable delay line; S, spectrometer](image_url)